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A closed-form solution of the coupled momentum and thermal energy equations is 
obtained for laminar gravitational circulation of water resulting from a longitudinal 
temperature gradient in a dead-end channel. The temperature gradient is determined 
by the rate of heat loss from the water surface. The solution is shown to be dependent 
on a modified Rayleigh number which involves the local surface heat-transfer co- 
eficient. An experimental study was conducted, and the results are compared with 
the closed-form solution. 

1. Introduction 
Gravity currents are an important phenomenon in environmental fluid mechanics. 

The distinguishing characteristic of gravity currents is that they are driven by a 
buoyancy which is the result of a density gradient in a gravitational field. This paper 
deals with thermally induced density gradients that occur in cooling lakes, which are 
large, confined bodies of water that receive waste-heat discharges. The resulting 
gravity currents are of particular interest in dead-end channels that form a portion 
of a natural lake. The gravitational circulation tends to draw heated water into 
‘stagnant’ areas of the lake where i t  undergoes surface cooling that sustains the 
circulation. 

Benjamin (1 968) has clearly demonstrated the role ofgravity in generating a stream- 
wise pressure gradient where there exists a difference in fluid density in the direction 
of flow. This manifestation of the gravity force is distinct from its role as a body force. 
Even though the channel slope is zero with a resulting zero component of the body 
force in the direction of flow, buoyancy can drive a circulation as in the familiar 
example of lock-exchange flow between fresh-water and saline-water canals (Keulegan 
1957). 

The work by Phillips (1966) on the gravitational circulation of the Red Sea showed 
that a similarity solution of the turbulent equations of motion is possible when the 
surface buoyancy flux due to salt and heat flux is considered to be independent of the 
streamwise co-ordinate. Imberger (1 974) studied laminar gravitational circulation 
experimentally, but in his case the end walls of the channel were differentially heated 
and the flow was confined a t  the top by an insulated lid. In  a companion theoretical 
investigation of this problem, Cormack, Leal & Imberger (1974) applied an asymp- 
totic analysis to the case of fixed Rayleigh number with the aspect ratio of the enclosed 
cavity approaching zero. Their analysis indicated the existence of a parallel flow 
structure in the core of the cavity. 
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Surface heat loss, Gn 

FIGURE 1 .  Vertical section of gravitational circulation in dead-end channel. 

The essential aspect of the gravity currents considered herein is the continuous 
change in the thermally induced density gradient in the direction of flow as controlled 
by the heat-transfer process a t  the free surface. This type of gravitational circulation 
depends upon the coupling between the equations of motion and the equation of 
thermal energy conservation. The surface heat flux is not only a component in the 
thermal energy balance but determines the horizontal pressure gradient in the equa- 
tions of motion as well. 

Gravity currents which are the result of thermally induced density gradients that 
are diminished by surface heat flux have been studied experimentally by Brocard, 
Jirka & Harleman (1977) and by the author (Sturm 1976). The analytical work by 
the author (Sturm 1976) led to a numerical solution of the governing equations of 
motion and thermal energy for both laminar and turbulent circulations. A study of 
the reasonableness of the numerical solutions and the occurrence of the laminar regime 
in the laboratory provided the impetus to seek a closed-form solution for the laminar 
case. 

2. Formulation 
The problem is formulated with reference to  the dead-end channel sketched in 

figure 1.  The channel is assumed to  have a horizontal bottom, a uniform width b,  
length L, and depth D(x) ,  where the co-ordinate system is defined in the figure. At 
the entrance to the channel (x = 0 ) ,  there is a vertically non-uniform temperature 
profile with a surface temperature T, = q. and a bottom temperature = To. Based on 
the experiments of the author (Sturm 1976), which will be discussed subsequently, 
it can be assumed that the temperature reached by the surface inflow current at the 
dead end of the channel becomes equal to the constant temperature To of the bottom 
outflow current. 

The surface heat-loss rate, q5%, depends on the water surface temperature, T,, and 
decreases with x as surface cooling occurs in the inflow current shown in figure 1 .  If 
essentially parallel flow is considered to exist in a central region of the channel, then 
a comparison of the hydrostatic pressure distributions a t  each end of this central 
region reveals a net force directed toward the open end of the channel. This force 
propels the bottom outflow current in figure 1.  Continuity requires an equal but 
opposite inflow current which rides over the top of the outflow current. The inflow 
current must be driven by a drop in the free surface toward the dead end of the channel. 
The central region of the channel is bounded by a flow-establishment region near the 
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channel entrance in which inertia and buoyancy forces are dominant, and a dead-end 
region which is characterized by a large vertical downflow as the inflow current is 
turned. The analysis herein is concerned primarily with the central region of a dead- 
end channel with large length-to-depth ratio in which the flow is nearly parallel and 
governed by buoyancy and viscous forces. 

The equations of motion and thermal energy conservation are simplified by making 
the following assumptions: (1) the flow is laminar; (2) the dead-end channel has a 
large length-to-depth ratio (small aspect ratio); (3) the rate of surface heat loss, $n, 
can be related linearly to the excess surface temperature relative to an equilibrium 
temperature, T,, e.g. gn = - K(T,-T,); (4) the vertical temperature profile shape is 
known and can be expressed by 0 = (T - To)/(T'- To) = f T ( y ) ,  where 7 = y/D; (5) the 
temperature vs. density relation is approximately linear over the surface temperature 
range, (Ti - To); and (6) the Boussinesq assumption applies. 

Although the assumption of laminar flow may be unrealistic except in laboratory 
situations, it is made in order to gain some insight into the more complex dynamics 
of turbulent gravity currents, which occur in cooling lakes. In  the central region of 
the flow, which is relatively very long in comparison to the depth as supposed by 
assumption ( Z ) ,  boundary-layer-type simplifications become possible in the equations 
of motion and thermaI energy. The linear relation for 4% in assumption (3) is based on 
an equilibrium temperature, T,, such that when T, = T,, there is no net surface heat 
flux. The coeficient, K ,  and T, are functions of meteorological conditions and the 
surface temperature a t  x = 0, Ti. They can be determined by the empirical relations 
summarized by Ryan, Harleman & Stolzenbach (1977)  for the relevant processes of 
heat transfer a t  the air-water interface. Assumption (4) concerning the temperature 
profile shape is similar to that employed in the KkmAn-Pohlhausen type of 
boundary-layer analysis in which the integral properties of the flow in the vertical 
direction are retained to effect a solution with respect to the horizontal, streamwise 
co-ordinate. 

With the above assumptions, the coupled equations of motion and thermal energy 
become : 

ap a Z u  ( i: t) ax ay2 '  
Po u--+v-  =--+p- 

- aP = -pg = -g(aT+P), 
aY 

in which po is a reference density corresponding to the temperature, To, and a is the 
slope of the density 'us. temperature relation. The thermal energy equation, (3) ,  has 
been written in integral form by applying the continuity equation and integrating 
over the depth with a boundary condition of zero heat flux a t  y = 0, and with the 
heat flux being given by the assumed linear relation a t  the air-water interface (y = D) .  

The inertia terms have been retained in (1) based on a preliminary order-of- 
magnitude analysis, while the horizontal diffusive terms have been neglected in (1) 
and (3) in comparison with the corresponding vertical contributions because LID 9 1. 
A closer examination of the horizontally elongated central region of the dead-end 
channel, however, reveals that the inertia terms may make a sufficiently small 
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contribution to equation (1) to be neglected as a first approximation. If the channel 
is very long (i.e. sufficiently long that all excess heat is lost to the atmosphere), the 
longitudinal gradient of horizontal velocity is quite small as is the magnitude of the 
velocity itself. For a shorter channel which still has a large length-to-depth ratio, 
much of the inertia of the inflow current might be expected to be lost within a hori- 
zontal distance of a few depths from the dead end of the channel. I n  this end region, 
which is very short, the inertia of the inflow current is lost rapidly as the dead end is 
approached and the free surface rises. The inertia is regained as the outflow current 
accelerates from the dead end and flows in a direction opposite to that of the inflow 
current. Thus, in the central region of essentially parallel flow, the inertia terms may 
be sufXciently small, when compared with the buoyancy and viscous forces, to be 
neglected. This assumption cannot be verified a priori because a careful estimate of 
the velocity scale can only be made after a solution of this free-convection problem 
has been obtained. 

Buoyant flows for which the formulation is given by (1)-(3), excluding the inertia 
terms in ( I ) ,  have been classified by Turner ( 1  973) as viscous diffusive flows. Turner 
points out that this type of flow can be characterized by a single dimensionless para- 
meter, the Rayleigh number, which reflects the importance of diffusion as vrell as 
viscous and buoyancy forces. Such a formulation corresponds to Koh's (1966) zeroth- 
order approximation for the problem of viscous stratified flow towards a sink. As 
another example of this type of flow, data for free-convection heat transfer from 
horizontal cylinders in several different fluids are well correlated with the Rayleigh 
number as the only independent parameter (Kreith 1973). 

As a first approximation, then, i t  is not without precedent nor lacking in a t  least 
some intuitive justification to neglect the inertia terms in (1) for the problem under 
consideration. This is done in the following section of this paper in which a closed- 
form solution of (1)-(3) is presented. The limitations of this assumption will be ana- 
lysed in more detail in 5 4. 

3. Solution 
The solution of ( l ) ,  (2)  and ( 3 ) ,  with the inertia terms neglected in ( l ) ,  proceeds by 

~ubst~ituting the temperature profile functionf,(r) into (2)  and eliminating the pressure 
p from ( 1 )  and ( 2 )  to obtain: 

Equation 4 is integrated with the boundary conditions u = 0 a t  y = 0 and au/ay = 0 
at  y = L) to produce the velocity distribution: 

where dD/dx has been expressed in terms of the temperature gradient, d(T, - To)/&, 
by applying the continuity condition, 
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I+'IGURE 2 .  Velocity profile polynomials ju(r) for selected temperature 
profile polynomials f ~ ( r ] ) .  

The function f,(r) in (5) is a velocity profile function determined solely by the 
choice of the temperature profile shape, fT (v ) .  In  figure 2,f,(q) is shown forfT(q) = q2 
and fT( l ; l )  = r4. The postulated counter-flow is readily evident from the shape off,(q). 
The elevation of zero velocity between the inflow and outflow currents is relatively 
insensitive to the choice offT(q), but the magnitude of f,(q) decreases a t  all elevations 
with an increase in the degree of the temperature profile polynomial, fT(r). 

The solution given by (5) for the velocity u was obtained solely from momentum 
and continuity considerations, and it involves the surface temperature gradient, 
d(Ts- T,)/dx, as an unknown parameter. This parameter couples the momentum 
equation to the thermal energy equation. If (5) is substituted into (3), which is the 
thermal energy equation, along with the assumed temperature profile f T ( q ) ,  then 
there results an ordinary differential equation in the unknown (q- TJ. In  dimension- 
less form, the equation to be solved is: 

where 

and where an i subscript refers to values a t  x = 0, v is kinematic viscosity, K is the 
local surface heat transfer coefficient, el, is specific heat, g is gravitational acceleration, 
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C, is a temperature profile constant defined in the appendix, Ape = p(T,) - p ( q . ) ,  
p e  = p(T,), and the various temperatures are defined in figure 1. 

The governing dimensionless parameter in (6) is a modified form of the Rayleigh 
number, Ram, in which the thermal conductivity has been replaced by KD,. The local 
coefficient of heat transfer K [  = - $,J(C - T,)] characterizes all the heat-transfer 
processes a t  the air-water interface including evaporation, conduction and radiation. 
The modified Rayleigh number can be considered to be a product of the Grashof 
number and a modified Prandtl number given by,uc,/KD,. The additional parameter 
appearing in (6) is O,, which is the unknown temperature boundary condition a t  
x = L, where L is the channel length. It will be shown below that Oo can be determined 
as a function of L, Di and Ram. 

An exact solution can be obtained for (6) by making the substitution of variables 
x = deS/dx0 with 8, becoming the independent variable and x the dependent variable. 
Exact integration of (6) with the boundary conditions Os = 1 a t  xo = 0 and dO,/dxo 
finite as 8, approaches zero provides the solution for the dimensionless temperature, 

where 

and where LO = LID,, C, is a temperature profile constant defined in the appendix, 
Apo = p(To) -p (T , ) ;  the other variables have been defined previously. The solution 
given by (8) for Us is determined by differentiating (7)  with respect to xo and sub- 
stituting the result into (5). The continuity condition and the integrated form of (4) 
provide the necessary relation between dOs/dxO and dS/dxO from which (9) is obtained. 

The solutions given by (7),  (8) and (9) are not complete without the boundary 
values of the surface velocity a t  x = 0, us,, and the surface temperature a t  x = L,  To. 
These must be determined from the imposed physical conditions of channel length, 
depth, surface temperature a t  the channel entrance, and meteorology. 

The unknown boundary condition B0 for a channel of given length L is determined 
by setting T, = To a t  x = L in ( 7 )  and expressing the result in terms of the ratio 
y = L/L,, where L, is an equilibrium length: 

19, = 1+2y2-y(6+3y2)+. (10) 

The equilibrium length is defined to  be the length of channel required for the surface 
temperature T, to become equal to T,, the equilibrium temperature, a t  which the 
net surface heat exchange is zero. The equilibrium length is determined from ( 7 )  as 
the value of x for which T, = To = T,: 
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0 0.2 0.4 0.6 0.8 1 .o 
LIL, 

FIGURE 3. Solutions for dimensionless bottom temperature, entrance flow rate and surface heat- 
loss rate for channel of length L. Equilibrium length L, is given by ( 1  1 ) .  A, experimental values 
for 0, by the author [ f ~ ( r ] )  = T ~ ] ;  0 ,  experimental values for 0, by Brocard et al. (1977) 
[.m) = 741.  

It is now apparent from ( 10) and (1 1) that the dimensionless boundary value given 
by 0, is a function only of LID,, the Rayleigh number, and the profile constant C,. 

The inlet surface velocity, us(, is easily determined from ( 5 )  and (7 ) :  

where C, is another temperature profile constant defined in the appendix, and B, and 
B, are as defined before. For the purpose of later comparison with experimental data, 
it is more convenient to use an expression for the inflow per unit width into the 
channel, qi:  

where C, is defined in the appendix and Lp = L,/Di. It can also be shown that B,/B, L: 
and hence q; are functions only of y = L/L, just as for 0,. 

Although the solution of ( I ) ,  (2) and (3) is now complete, one of the quantities of 
interest may be the total rate of surface heat loss from the channel, which can be 
determined from the foregoing development. If the total rate of surface heat loss HE 
from a channel of equilibrium length and width b is defined as 
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FIGURE 4. Solutions for surface velocity, temperature and depth variation with longi- 
tudinal distance along the channel for L/LB = 1.0 (-) and L/Le = 0.5 (- - -). 8, 
= (T, - I;)/(T, - T,) = e,( i - 8,) + e, ; u, = 8 = D ( ~ ) / B ~ .  

i t  is readily shown that Ec = +K from a substitution of (7)  into (14). For a channel of 
specified length L, the ratio of surface heat-loss rate HL to that from the equilibrium 
channel of length L, is formed and found to be a function of y = L/L,: 

The solutions for O,,, ql and H' are shown in figure 3 as a function of y.  
The profile constants that appear in the solution are given in table 1 for several 

polynomial temperature profile shapes. The shapes chosen are fT(r) = ym,  where m 
varies from 1 to 5. These functions were selected for ease of integration. Other 
functions are possible, and the resulting constants can be evaluated from the expres- 
sions given in the appendix. Because of the way in which the surface heat-transfer 
boundary condition is specified in the integral solution approach, it is unnecessary 
for the assumed temperature profile shape to have the correct slope a t  the free surface. 

4. Discussion of solution 
Introduction of the equilibrium length L, provides a useful generalization of the 

dimensionless solutions for surface temperature, velocity, and depth in (7),  (8) and 
(9), in which the independent variable is x/Di. If the solutions are plotted vs. xlL, 
instead of .IDi, they become universal in form as shown in figure 4. The terms in- 
volving only B,, B, and xo in (7 ) ,  ( 8 )  and (9) can be shown to reduce to functions of 
x/Le and LIL,. The dependence on Ram and the temperature profile shape is em- 
bedded in L, such that specifying LIL, establishes the complete solution for dimen- 
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sionless temperature and velocity in figure 4. The solution for the dimensionless depth 
in figure 4 further requires the value of Apo/po as can be observed from (9).  Although 
ApIp,, can be determined from (Ti - T,), the relation between 0, and L/L, is insufficient 
to obtain (Ti - To). The value of (Ti - T,) is also needed because of the non-dimensionali- 
zation inherent in the definition of 0,. For the non-dimensional depth solution, then, 
(Ti - T,) must be specified in addition to LIL,. This does not decrease the generality 
of the solution because (Ti - T,) must also be known to calculate Ram and hence LIL,. 
The equilibrium temperature, T,, depends only on meteorological conditions, while Ti 
is the surface temperature a t  the entrance of the channel and must be specified. 

The solutions for L/L, = 1.0 and 0.5 are compared in figure 4. As the channel length 
is decreased while holding constant all other variables, the velocity a t  x = 0 increases 
owing to reduced overall friction in spite of the decrease in the hydrostatic force as 
To increases. Simultaneously, the horizontal temperature gradient a t  x = 0 becomes 
larger negatively so that heat conservation is satisfied; the net heat flux into the 
channel must equal the total heat flux from the water surface a t  steady state. The 
boundary values To and us( adjust themselves as the channel length decreases such 
that both the thermal energy and momentum equations are satisfied. 

The solutions shown in figure 4 are affected by the choice of temperature profile 
shape only through a change in equilibrium length L,. It was shown in figure 2 that, 
as the degree n of the temperature profile polynomial increases, the resulting velocity 
polynomial, fu(r), decreases in magnitude over the full depth of flow. For a channel 
of given length and specified value of Ram, the surface velocity a t  x = 0, usi, becomes 
smaller as n increases because of the decrease in the buoyant force arising from the 
hydrostatic pressure force difference between the entrance and the dead end of the 
channel. Consequently, there is a decrease in the net heat transported into the channel 
and a greater surface temperature drop, (Ti - T,), over the full length of the dead end 
channel. These effects are reflected in figure 4 by a decrease in the equilibrium length. 

The depth decreases toward the dead end of the channel as shown in figure 4 in 
order to drive the inflow current as postulated in f3 2 .  Although the depth change is 
very small, it makes a significant contribution to the horizontal pressure gradient 
and thus to the magnitude of the velocity a t  any x. As the contribution of the hori- 
zontal temperature gradient to  the pressure gradient goes to zero for x/Le approaching 
1.0, so also does the contribution of the depth gradient. For a channel of given length 
L < L,, the depth will increase with x as the surface temperature T,  approaches T, 
so that the velocity can be forced to zero as the dead end is reached. This depth in- 
crease will occur over a relatively short reach of the channel near the dead end. Over 
this short reach, the formulation and solutions presented herein are not applicable. 

The solutions for O,, qi and H' in figure 3 indicate how the boundary conditions 
and heat loss vary with the ratio L/L,. The solutions themselves are practically 
insensitive to the temperature profile shape (see table 1 for variation in C, which 
appears in (1311, but the value of L, is quite dependent on fi.(r). The heat-loss rate 
increases very rapidly with y .  Approximately 83 per cent of the maximum possible 
rate of heat loss and 80 per cent of the maximum surface temperature drop occur in a 
channel which has a length that is only 50 per cent of the equilibrium length. As a 
result, the value of q; changes very little for L/Le > 0.5. For L/L, < 0-5, qi increases 
gradually with a decrease in channel length as discussed previously. The curve for 8, 
in figure 3 should not be interpreted as the rate a t  which the surface temperature 
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m c, c, c3 CP f d I )  

_-  71* +--- 9r2 77 
1 576 0.275 7.20 1.60 

24 80 120 

I5 7r2 I 

76 372 37 

2 800 0.21 7 6.67 1.50 
60 120 30 

3 1200 0.179 7.14 I .57 
120 84 140 

9' 27y2 571 
210 1120 336 

4 1764 0.152 7.88 1.68 

7 s  3572 1171 
5 2509 0.1 32 8.7 1 1.82 

336 2016 1008 

TABLE 1 .  Solution profile constants and velocity functions for fT(7) = 71". 

decreases with x for a given channel length, but rather as the locus of boundary values, 
To, for channels of variable length. 

The concept of an equilibrium length was developed because of the generality it 
provides in the presentation of the solutions in figures 3 and 4. It is not intended to 
obscure the controlling dimensionless parameter of the free convection in the dead- 
end channel. This parameter is the modified Rayleigh number, Ram, which emphasizes 
the dominance of the buoyancy and viscous forces and the importance of surface heat 
transfer in a central region of the dead-end channel for which L I D  % 1. Decreasing 
the fluid viscosity in a channel of given length, for example, increases Ram and L,/D 
and, as a result, the inflow velocity increases while the surface temperature drop, 
(q. - To), decreases. On the other hand, increasing the surface heat transfer coefficient 
K decreases Ram, and (Ti - To) increases. Thus, the modified Rayleigh number measures 
not only the relative importance of buoyancy and viscous forces but also the rate a t  
which the driving buoyancy force is being lost by surface heat transfer to the atmo- 
sphere. 

The limitations of neglecting the inertia terms in (1) can be examined in light of 
the closed-form solution which has been obtained. If the closed-form solution is 
utilized to provide a first-order estimate of the magnitude of the inertia terms, their 
relative importance when compared with the buoyancy and viscous terms in (1) can 
be assessed. The ratio of inertia to buoyancy forces is given by the following definition 
of densimetric Froiide number, F: 

in which u , ~  is the surface velocity a t  x = 0; Au, is the decrease in surface velocity 
from x = 0 to the end region (assumed to be very short) where x = L ;  and (dDldx), 
is the slope of the free surface a t  x = 0. The evaluation of F2 has been chosen at  a 
point where the inertia forces can be expected to have their maximum value. The 
buoyancy force a t  the free surface, where the inertia terms are evaluated, is contri- 
buted solely by the slope of the free surface that is necessary to balance the effect of 
the horizontal density gradient integrated over the depth. 
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If usi, Au,, and ( d n l d x ) ,  are evaluated by the closed-form solution, the following 
exuression is obtained for F2: 

in which C,, C, and C3 are profile constants given in table 1 ,  and Pr, is a modified 
Prandtl number defined by ,ucp/KD, where K is the local coefficient of surface heat 
transfer, D is the depth, cp is specific heat, and ,u is absolute viscosity. If the inertia 
terms are indeed small, then F2 < 1, which requires that Pr, $ 8 x The choice 
of m = 3 , 4  or 5 in table 1 gives virtually the same limiting value of Pr,. Using typical 
values of K = 2 x 10-3 W K-l and D = 20 cm for laboratory conditions with 
water as the fluid, Pr,, has a value of approximately 1.0, which is a t  least one order of 
magnitude larger than the limit a t  which the inertia terms must be considered. Thus, 
it seems that, for Pr, suficiently large, i t  is possible to neglect the inertia terms in ( l ) ,  
at  least as a first approximation. 

On the other hand, the convective terms in the thermal energy equation, (3), cannot 
be neglected. The heat that is lost through the free surface must be balanced by the 
net longitudinal convection of heat. The vertical heat diffusion terms, which supply 
the heat to the free surface, must be much larger than the horizontal diffusion terms 
if L I D  $ 1 and, as a result, must be of the same order as the longitudinal convection 
terms. Imberger ( 1  974) reports that, in the reduction of his experimental results for 
an enclosed cavity of small aspect ratio, the convective heat transfer far exceeded 
the horizontal conduction of heat. This is also true in the present situation in which 
the heat lost a t  the free surface is supplied by horizontal convection. 

5 .  Experiments 
Laboratory experiments were conducted in a tilting flume at  the Iowa Institute of 

Hydraulic Research. The flume is 26 m long, 0-75 m wide, and has glass side walls 
which are 25 cm high. The flume was set a t  zero slope, and water was ponded in a 
20 m length of the flume by placing aluminium bulkheads in it as shown in figure 5 .  
Electric, immersion heating rods were positioned in the ponded water to serve as an 
artificial heat source. Temperatures and velocities were measured after steady state 
had been reached, which was typically 24 hours after the immersion heaters were 
started. 

The temperature field was measured by a movable rake of thermistors connected 
to an IBM 1800 data acquisition and control system. Bridge voltages from the ther- 
mistors were digitized and converted to temperatures by means of stored calibration 
curves. The temperatures a t  each vertical position of the thermistor rake were width 
averaged and displayed an uncertainty of no more than f 0.1 "C, which confirms the 
existence of a two-dimensional temperature field. 

Velocity profiles were measured by photographing a vertical time line a t  the 
beginning and end of a measured time interval. Continuity checks in the inflow and 
outflow currents indicated an uncertainty of 10-20 per cent in the flowrate computed 
from measured velocities. This was to be expected because of the small magnitude of 
the velocities and attendant measurement difficulty. 

The iqotherms and representative temperature profiles for experimental runs A 
and B are shown in figures 6 and 7 ,  respectively. In the central region of the channel, 
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FIGURE 5 .  General layout of experimental dead-end channel. (a )  Plan; (b )  profile. 
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FIGURE 6. Isotherms and temperature profiles for experimental run A. (a )  Isotherms ("C), 
( b )  x / D  = 0,  ( c )  x / D  = 19, (d )  x / D  = 38, ( e )  x / D  = 114. D = 16.1 cm, T, = 21.1 "C, q i  = 
1.2 cm2 5-l .  

the isotherms are nearly horizontal and rise to the water surface as a result of surface 
cooling. Large vertical gradients of temperature in the upper half of the flow are 
apparent. The surface temperature decreases toward the dead end of the channel and 
reaches a value equal to the nearly constant bottom temperature. 

A typical velocity profile is given in figure 8. There is a central region of the channel 
in which the point of zero velocity between inflow and outflow currents remains a t  a 
nearly constant elevation. Within this region the flow is practically parallel, and the 
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FIGURE 7. Isotherms and temperature profiles for experimental run B. (a)  Isotherms ("C), 
( b )  x / D  = 0,  (c )  x / D  = 20, ( d )  x / D  = 39, (e) x / D  = 118. D = 15.5 cm, T, = 26.4 "C, qr = 
1.5 cma s-l. 

assumptions made to achieve a closed-form solution of the equations of motion and 
thermal energy are applicable. Upstream of this region is a region of flow establish- 
ment in which large vertical currents occurred as a result of the placement of the 
heating rods near the water surface. 

6. Comparison of experimental results with solution 
For the purpose of comparison with the closed-form solution, the experimental 

results of Brocard et al. (1977)  as well as those of the present author are considered. 
The experiments by Brocard et aE. (1977) were conducted in a 10-7 rn long flume with 
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FIGURE 9. Comparison of closed-form solution (-) for longitudinal distribution of 0, 
[ = (Ts- %)/(Ti  - T,)] with experimental values. (a)  A, experiment B, Ti = 32.7 "C, T, = 26.4 " C ,  
D = 15.5 cm, L = 19-5 m, Ram = 7.2 x lo', Pr, = 0.8, L,/D = 415 I f ~ ( 7 )  = T 6 ] .  (a) 0 ,  
experiment 14 (Brocard et al. 1975), Ti = 42.4 "C, T, = 20.8 "C, D = 16.5 cm, L = 10.6 m, 
Ram = 2 . 3 ~  lo8, Pr, = 0.75, L,/D = 742 [fT(q) = 7'1. 

a head tank which was wider than the flume and into which heated water was intro- 
duced through a radial diffuser. An equal discharge of water was withdrawn through 
a multiport outlet device in the head tank. The resulting stratified temperature profile 
a t  the entrance to the channel produced a gravity circulation in the channel similar 
to that described herein for the author's experiments. 

The distribution of surface temperature along the channel obtained from the closed- 
form solution is compared with the author's experimental run B and with experi- 
mental run 14 of Brocard, Jirka & Harleman (1975) in figure 9. For both runs, the 
temperature profile polynomial has been assumed to be fT(v) = v5 because the tem- 
perature profiles were similar in shape. The height of the inflection point in the 
temperature profile (measured above the channel bottom) was 0.75 times the depth 
for run B and 0-70 times the depth for run 14. Only the downstream 13 m of the 
channel in run B are included in the central region due to the vertical currents that  
occurred in the region of flow establishment. It can be seen in figure 9 that the agree- 
ment with the closed-form solution is much better for run 14 than for run B. A portion 
of the discrepancy in run B may be attributed to a surface heat-loss relationship 
which was highly nonlinear. 

Much of the data presented by Brocard et al. (1977) is for the boundary values 8, 
and a dimensionless discharge into the channel defined by 

q'! = qi Le I 

(KL/pc*) = I, qi' 

where qi is the discharge per unit width in the inflow current a t  x = 0, and q; is defined 
by (13). I n  figure 3 the closed-form solution for 8, is compared with the author's data 
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FIGURE 10. Comparison of closed-form solution for boundary values 8, and q: [ = q, / (KL/pe , ) ]  
with experimental values. 0 ,  Brocard e ta l .  (1977)  [ ~ T ( T / )  = v4]; A, author’s results [ ~ T ( T / )  = q 5 ] .  

and selected data of Brocard et al. for which the height of the point of inflection in the 
temperature profiles measured from the channel bottom varied from 0.55 to 0.65 
times the depth. This allowed each data set to be plotted according to a single tem- 
perature profile shape, which was chosen to be fT(r)  = r4 for the selected data of 
Brocard et al. and f T ( p )  = 7 5  for the author’s data. The influence of the chosen tem- 
perature profile shape appears in the value of L, and hence in the plotting position 
of the experimental data along the horizontal axis in figure 3. The solution curves for 
8, and H are unaffected by temperature profile shape. 

The experimental values of qz are plotted us. the corresponding experimental values 
of B0 in figure 10. Such a functional relation follows from (1 8) and the observation 
that, in figure 3, 8, and q; are both functions of L/L,. The values of K in the measured 
qz are based on empirical relationships for the surface heat loss a t  the air-water inter- 
face and are calculated by K = -$ni/(z- Te), where $ni is the rate of heat loss per 
unit area a t  x = 0. The surface-heat-loss relations used in the reduction of the author’s 
data shown in figure 10 were adjusted from those suggested by Brocard et al. for their 
data such that the heat loss calculated from the measured water temperatures along 
the entire channel agreed with the measured rate of heat input. If the relations of 
Brocard et al. had been used instead to determine K ,  the author’s data points would 
be shifted to the right by approximately 30 per cent and slightly downward in figure 10. 

The general trend of the solution curves agrees well with the experimental data in 
figures 3 and 10, but there is scatter about the curve for O,, and the dimensionless 
discharge is consistently overestimated. This latter discrepancy may be due in part 
to the difficulty and associated error in measuring the discharge pi, but the influence 
of the chosen temperature profile shape probably plays a greater role. The measured 
temperature profiles in figure 6, for example, are considerably ‘fuller’ than the higher- 
degree polynomial shapes given by fT(q), which were selected for ease of integration 
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in obtaining the closed-form solution. The result is that the interfacial friction is 
probably underestimated by the closed-form solution and agreement with the measured 
values of 0, is obtained by over-compensating with a higher degree temperature 
polynomial to get a reasonable value of C,, which appears in (11 ) .  An additional 
solution curve is shown in figure 10 for C, arbitrarily chosen to be 1.0 to show the 
better agreement with the experimental data that can be obtained. Because of the 
strong dependence of C, on the temperature profile shape and the estimate of the 
order of magnitude of the inertia terms given in $4, the discrep:mcy between the 
closed-form solution and the experimental results is thought to be influenced primarily 
by the temperature profile shape rather than by neglecting the inertia terms in the 
momentum equation. 

An additional difficulty in expressing the experimental results for q; is the problem 
of experimentally determining the linear coefficient K for an inherently nonlinear 
relation between the rate of surface heat loss and surface temperature. The combined 
choice of K and temperature profile shape for the experimental results in figures 3 
and 10 seems to have produced values of Ram and L/L, which give reasonable agree- 
ment between the measured and calculated Oo but the corresponding values of q;, 
which also involve K in their definition, are overestimated by the closed-form solution. 

7. Summary and conclusions 
It has been shown that a closed-form solution of the coupled equations of motion 

and thermal energy reproduces the essential aspects of laboratory results for thermally 
induced gravity currents in the laminar regime. The governing dimensionless para- 
meter of the problem is a modified Rayleigh number, which is shown to determine 
not only the solutions for temperature, velocity, and depth, but also the initially 
unknown velocity and temperature boundary conditions. The results of the closed- 
form solution are limited by the assumption of laminar flow and the relatively simple 
shapes chosen for the temperature profiles, but the solution provides a foundation 
for the understanding of the mechanics of thermally induced gravity currents under 
less limited circumstances. 

The experimental portion of this investigation was carried out a t  the Iowa Institute 
of Hydraulic Research, and the author is indebted to Professor J. F. Kennedy for 
many useful discussions. The analytical work reported in this paper was completed 
at. the Georgia Institute of Technology with partial support from National Science 
Foundation Grant ENG 78-21957. 

Appendix. Definition of profile constants 
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